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Abstract

We examine thdow-erergy part of Raman scattering spectrum from a three-dimensional
regimented array of G&ii_y quantum dots on Si. Our analysis is based on a numerical solution of
the dasticity equation for the whole quantum dot sdpé#tice. Three-dimensional acoustic phonon
folding due to structure regimentation and shiehture size leads to unique signatures in Raman
spectra, which cannot be predicted using the Lamb-type models for quantum dots or the Rytov model
for aquantum well superlattice. We found that symmetry breaking, which is achieved when the inter-
dot distances are comparable to the dot dimensions, results in increased intensity of confined phonon
modes. It is also shown that changes in dot material composition and alteration of the dot size lead
to different Raman spectrum modification. The latter can be used as a tool to distinguish phonon
confinement effects on Raman spectra from alloying and strain induced effects.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Raman spctroscopy has proven to be a powerful tool for investigation of arrays
of semiconductor quantum dot4-3], nanoparticles 4, 5], as well as of nano- and
microcrystalline multilayers€]. It is capable of poviding information on modification
of vibration spectra of such structurel P] as well as o carrier confinement3]. Of
special interest are phonon confinement effects in quantum dot and nanocrys&jls [
They manifest themselves via appearance of additional peaks in the low-frequency
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range p—7], blue shift of confined acoustic phonon peaks with decreasing nanopatrticle size
[5-7], as well as red shift and asymmetric broadening of optical phonon p8gks [

At the same time, interpretation of spectra obtained in Raman scattering experiments
with quantum dot samples is plagued with uncertainties and is a subject of continuous
debates. It is often difficult to determine whether the change in location and shape
of Raman peaks is due to strain, alloyingteiiffusion or it is induced by spatial
confinement9]. When quantum dots formragimented array, the interpretation of Raman
spectra becomes an even greater challenge gwarthepossible appearance of additional
phonon dispersion branches, e.g. standing waves inside or between quantum da@, etc. [
This presents a strong motivation for theoretical investigation of Raman spectra of quantum
dot arrays.

Most experimental Raman spectra of quantum dots are analyizé&d T, 9, 11, 12|
on the bais of Lamb’s theory 13| or variationsthereof, which use vibration modes of a
homogeneous elastic body of spherical shapader stress-free boundary conditions. Such
analysis does not account for the effect of thergunding matrix (template, spacers, etc.).

In some caseslf] the Raman gectra of quantum dots is interpreted on the basis of the
Rytov model [15], which is also a very crude approximation since the Rytov model is
essentially one-dimensional and valid for layered media such as quantum well superlattices
(QWS). In this paper we present a model based on the exact numerical solution of the
elasticity equation for thevhole structure rather than for separate dots, which allows

for accurate interpretation of Raman spectréhoée-dimensional (3D) regimented arrays

of quantum dots. We argue that it is essential to consider the vibration spectrum of the
whole structure irorder to obtain correct peak positions and separate the effect of strain or
interdiffusion from phonon confinement.

Unlike QWS, the term quantum dot superlattice (QDS), which indicates a multiple
array of quantum dots, is conventionallyegisfor structures with or without long-range
orderingin the quantum dot positiorLf]. Partially regimented QDS have been fabricated
by a variety of techniqued] 2, 9, 16]. Nearly perfect two-dimensional (2DB] and 3D
regimentation have also been achievéd [ Regimentation along all three directions in
such a structure brings an analogy with bulk crystals. In these artificial crystals the role
of atoms is played by quantum dots. When the size of the dots is much smaller than
the mean-free path (MFP) of acoustic phonons such structure is characterized by its own
phonon spectrum and not by the spectrum of individual quantum dots. Here for simplicity
we consider an orthorhombic QDS with rectangular parallelepiped shape of the dots. We
have previously showrl[] that the carrier and phonon spectrum of QDS is more sensitive
to the dot size and regimentation ratherrthta exact shpe. The dot size is chosen to
be in the range of 3-9 nm so that it is much smaller than the phonon MFP and laser
wavelength @ = 514 nm) yet it is large enough for application of the elastic continuum
approximation 10].

2. Moddl

We restict our analysis to the low frequency part of the spectrum where we expect the
most pronounced effects of confinement and regimentation. First the phonon dispersion is
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calculated by solving the elasticity equation derived from Euler—Lagrange equati§ns [
for a non-uniform medium with cubic crystal lattice (s&€][for the details). After phonon
dispersion is found we obtain Raman intensitising a macroscopic theory for calculating
the photoelasticity tensoil]. It describes the phonon—photon interaction in the following
way. A periodic displacement of geormeal points of the matterU(r,q, 2) =
u(r, g, 2)exp(—i £2t) causes the periodic change of the local strginwhich, in turn,
locally modulates theidlectric susceptibilityi; = eﬂ + Yagijkow of the mater. Here(?

is the phonon frequencyy is the phonon wavevector? is an unperturbed susceptibility
tensor, which is diagonal in the main catimate system of cubic semiconductarsy are
components of the photoelastic tensor. In semiconductors of cubical symmetry there are
only two independent non-vanishing components of the photoelasticity tgpsarand

01122 Thuseijj perturbed by phonons has grils diagonal components

Exx = &0y + Chlllaa% + Q112288—L;/y + Q112288—UZZ, 1)
with similar expressions faryy ande, obtained by cyclic exchange &f y, andz.

An electromagnetic wee with frequency » and wavevectok in optically isotropic
medium can be characterized by= £¢pA exp(ik - r)exp(—iwt). Heregg is the dielectric
susceptibility of a vacuumA is the light polarization vectpmhich is perpendicular to
the direction of thavave popagation|k| = 2r¢1/2/, andx is the light wavelength in a
vacuum. The probability of the scattering process from s$tateto |D ) is proportional to
the square of the projection of the initial state onto the final one. Since all the eigenstates are
orthogonal, the allowed processes are either from the state perturbed by phonon vibration
to theunperturbed state, or vice versa. The first process corresponds to light scattering with
phonon absorption leading to an anti-Stokes peak shift and the second one corresponds to
phonon emission, i.e. Stokes shift. Multi-phonon processes are also allowed but with much
less intensity.

Here we limit consideration to one-phonon anti-Stokes processes. The intensity of
Stokes peaks in experimental spectra can be found by scaling with the Boltzmann
factor [L8]. The probability of the scattering process from sthde) to |Dy) is found
asPsi o |(Df | Dj)|% Subdituting an expression fob, taking into account thaD;)
corresponds to an electromagnetic waveQBS with dielectric susceptibility (Eqly)
perturbed by phonons and applgiquasi-periodic boundarynditions, we find the final

equation
/ dr
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Fig. 1. Lowest phonon dispersion branches in cubic Ge/Si QDS jth= Ly = Lz = 3.0 nm;Dx = Dy =

Dz = 9.0 nrm. Arrow indicates the wavevector of phonons taking paRaman back scattering when the normally
incident light propagatesag [[001]] direction. Note that the magnitudéthis wavevector is comparable to the
QBZ sze.

Eqg. @) in an effective optical medium approximation can be expressed using conven-
tional Raman tensofR notation for thewhole 3D QDS structure via the expression
Pii o« AT « | . A1|2, whereR components are determined by an integration of the
perturbed dielectric function over the QDS unit cell.

3. Resultsand discussion

We cary out numerical simulation for GeSi quantum dots on Si with the material
parameters taken as i2(. Fig. 1 shows phonon dispersion for cubical QDS with the
dot size ofL = 3.0 nm and the eriod of D = 9.0 nm. It is usially assumed that in
normal-incidence back-scattering configuratthbe Ramangectroscopy probes the zone-
center phonons since transfer momentum iy arall compared with the Brillouin zone
size, e.g. the wavelength of light is several orders of magnitude larger than the lattice
constant. The specific of Raman spectroscopy of regimented arrays of quantum dots is
that the momentuniy| = 2|k;| is comparable with the size of the quasi-Brillouin zone
(QBZ) as indicated by the arrow iRig. L Thus, it is important to know the phonon
dispersion accurately when analyzing Ramspectra of QDS. In this figure, the double
degenerate transverse mode is marked By @hile longitudinal and mixed modes
are marked as and M, correspondingly. Note, tha#dach phonon branch changes the
symmetry of the corresponding vibration in the regions of QBZ where it interacts with
other branches.

In Fig. 2(a) we present the calculated Raman spectrum of cubicgbizs/Si QDS
for different atomic fractionx of Ge in GegSii_x quantum dots. In this calculation
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Fig. 2. Raman spectrum of (a) (8i1_x/Si cubic QDS with fixed dot size dfx = Ly = Lz = 3.0 nm, peiod

Dx = Dy = Dz = 9.0 nm anddifferent Ge atomic fractiorx; (b) Ge/Si tetragonal QDS with fixed dot base

Lx = Ly = 3.0 nm andDx = Dy = 9.0 nm, and dferent D; = 2L along the [[001]] direction of light
propagation. To lead the eye the position of the lowest L and M modes is traced with dashed line. Note that due
to the change of the symmetry of the QDS wtl the order of the modes may change.

we assumed thahé change in atomic fractior leads to a linear change in materials
parameters and used hogeneous broadening ofG® cnt!. The lowestwavenumber

peak seen irFig. 2(a, b) corresponds to the lowest longitudinal acoustic phonon mode
of the bulk material. As expected its position is almost not sensitive either to change in
atomic fraction or geometry. In the back scattering geometry with the normal incidence of
light parallel to the [001] direction of the host cubic semiconductors, the phonon modes
are Raman active if they have a longitudinal component of vibrations. Indeed, transverse
modes only produce shear vibrations witbddx = duy/dy = duz/dz = 0 which

do not contribute toPs; (see Eq. 2)). The change in Ge atomic fraction leads to two
noticeable effects: the shift of Raman peaks adésteibution of their intensity, e.g. gradual
damping of the signal from the third branch and increase of the signal from the upper
longitudinal and mixd modes. The latter can be traceddi to the symmetry breaking

of the displacement. Since alloying between Ge dots and Si barrier layers may lead to
emergence of extra Si—-Ge modes, which are difficult to separate from confined acoustic
Ge nodes, our results may shed new light oqperimental datanterpretation 9.

A change in the inter-dot distance between Ge dots in a Si matrix causes nonlinear
redistribution of intensities. In two limiting cases of infinitely small and infinitely large
inter-dot distances QDS evolves to bulk Ge or Si, respectively. Correspondingly, only the
lowest longitudinal mode is active. The upper longitudinal and mixed modes are most
intensive when the symmetry breaking igglhest. It is achieved when the dot sike
is comparable with t interdot distanceH. The shmking of the QBZ vith increasing
D = H + L results in the red shift of these peaks since folding of the acoustic phonon
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dispersion branches is attained at lowerrgies. Wherthe symmetry of QDS is preserved
the general structure of the Raman spectrum is the same.

Fig. 2(b) illustrates the effect of the dot shape, i.e. the symmetry breaking, on Raman
spectra. The presented results are for the dots with constant base: (Ly = 3.0 nm;

Dy = Dy = 9.0 nm) and changing height of the quantum dot along the [[001]] quasi-
crystallographic direction. The inter-dot distance is fixedHat = L,. Onecan see
significant redistribution of the peak intensity and strong shift of some peaks, which is
a ombined effect of the QBZ size decrease in the [[001]] quasi-crystallographic direction
and strong modification of phonon dispersigith change of the symmetry. The position

of each peak can be traced back to ¢th&ulated dispersion (sé&dg. 1).

One should note here that the peakshig. 2 have a more complicated structure than
typical doublets observed in Raman scattering from folded acoustic phonons in QWS. The
postion of these peaks could not be deduced from Lamb-type models that use eigenmodes
of free-standing nanocrystals.

4, Conclusion

Analysis presented in this paper shows that it is essential to consider the vibration
spectrum of the whole structure in order to obtain correct peak positions and separate
the dfect of strain or interdiffusion from phonon confinement. The proposed approach
allows for an accurate analysis of experma Raman spectra @fuantum dot arrays. It
can be used to account for the effects of dot regimentation, matrix materials and assist in
separation of the spatiabofinement effects from alloying and interdiffusion.
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