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Abstract

We examine thelow-energy part of Raman scattering spectrum from a three-dimensional
regimented array of Gex Si1−x quantum dots on Si. Our analysis is based on a numerical solution of
the elasticity equation for the whole quantum dot superlattice. Three-dimensional acoustic phonon
folding due to structure regimentation and small feature size leads to unique signatures in Raman
spectra, which cannot be predicted using the Lamb-type models for quantum dots or the Rytov model
for aquantum well superlattice. We found that symmetry breaking, which is achieved when the inter-
dot distances are comparable to the dot dimensions, results in increased intensity of confined phonon
modes. It is also shown that changes in dot material composition and alteration of the dot size lead
to different Raman spectrum modification. The latter can be used as a tool to distinguish phonon
confinement effects on Raman spectra from alloying and strain induced effects.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Raman spectroscopy has proven to be a powerful tool for investigation of arrays
of semiconductor quantum dots [1–3], nanoparticles [4, 5], as well as of nano- and
microcrystalline multilayers [6]. It is capable of providing information on modification
of vibration spectra of such structures [1, 2] as well as on carrier confinement [3]. Of
special interest are phonon confinement effects in quantum dot and nanocrystals [4–9].
They manifest themselves via appearance of additional peaks in the low-frequency

∗ Corresponding author.
E-mail address: alexb@ee.ucr.edu (A.A. Balandin).

0749-6036/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0749-6036(03)00049-1



96 O.L. Lazarenkova, A.A. Balandin / Superlattices and Microstructures 33 (2003) 95–101

range [5–7], blue shift of confined acoustic phonon peaks with decreasing nanoparticle size
[5–7], as well as red shift and asymmetric broadening of optical phonon peaks [8].

At the same time, interpretation of spectra obtained in Raman scattering experiments
with quantum dot samples is plagued with uncertainties and is a subject of continuous
debates. It is often difficult to determine whether the change in location and shape
of Raman peaks is due to strain, alloying, interdiffusion or it is induced by spatial
confinement [9]. When quantum dots form aregimented array, the interpretation of Raman
spectra becomes an even greater challenge owing to thepossible appearance of additional
phonon dispersion branches, e.g. standing waves inside or between quantum dots, etc. [10].
This presents a strong motivation for theoretical investigation of Raman spectra of quantum
dot arrays.

Most experimental Raman spectra of quantum dots are analyzed [4, 6, 7, 9, 11, 12]
on the basis of Lamb’s theory [13] or variationsthereof, which use vibration modes of a
homogeneous elastic body of spherical shapeunder stress-free boundary conditions. Such
analysis does not account for the effect of the surrounding matrix (template, spacers, etc.).
In some cases [14] the Raman spectra of quantum dots is interpreted on the basis of the
Rytov model [15], which is also a very crude approximation since the Rytov model is
essentially one-dimensional and valid for layered media such as quantum well superlattices
(QWS). In this paper we present a model based on the exact numerical solution of the
elasticity equation for thewhole structure rather than for separate dots, which allows
for accurate interpretation of Raman spectra ofthree-dimensional (3D) regimented arrays
of quantum dots. We argue that it is essential to consider the vibration spectrum of the
whole structure inorder to obtain correct peak positions and separate the effect of strain or
interdiffusion from phonon confinement.

Unlike QWS, the term quantum dot superlattice (QDS), which indicates a multiple
array of quantum dots, is conventionally used for structures with or without long-range
ordering in the quantum dot position [16]. Partially regimented QDS have been fabricated
by a variety of techniques [1, 2, 9, 16]. Nearly perfect two-dimensional (2D) [3] and3D
regimentation have also been achieved [17]. Regimentation along all three directions in
such a structure brings an analogy with bulk crystals. In these artificial crystals the role
of atoms is played by quantum dots. When the size of the dots is much smaller than
the mean-free path (MFP) of acoustic phonons such structure is characterized by its own
phonon spectrum and not by the spectrum of individual quantum dots. Here for simplicity
we consider an orthorhombic QDS with rectangular parallelepiped shape of the dots. We
have previously shown [10] that the carrier and phonon spectrum of QDS is more sensitive
to the dot size and regimentation rather than to exact shape. The dot size is chosen to
be in the range of 3–9 nm so that it is much smaller than the phonon MFP and laser
wavelength (λ = 514 nm) yet it is large enough for application of the elastic continuum
approximation [10].

2. Model

We restrict our analysis to the low frequency part of the spectrum where we expect the
most pronounced effects of confinement and regimentation. First the phonon dispersion is
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calculated by solving the elasticity equation derived from Euler–Lagrange equations [18]
for a non-uniform medium with cubic crystal lattice (see [10] for the details). After phonon
dispersion is found we obtain Raman intensities using a macroscopic theory for calculating
thephotoelasticity tensor [19]. It describes the phonon–photon interaction in the following
way. A periodic displacement of geometrical points of the matterU(r, q,Ω) =
u(r, q,Ω)exp(−iΩ t) causes the periodic change of the local strainσi j which, in turn,
locally modulates the dielectric susceptibilityεi j = ε0

i j + Σqi jklσkl of the matter. HereΩ
is the phonon frequency,q is the phonon wavevector,ε0 is an unperturbed susceptibility
tensor, which is diagonal in the main coordinate system of cubic semiconductors,qi jkl are
components of the photoelastic tensor. In semiconductors of cubical symmetry there are
only two independent non-vanishing components of the photoelasticity tensorq1111 and
q1122. Thusεi j perturbed by phonons has only its diagonal components

εx x = ε0
x x + q1111

∂Ux

∂x
+ q1122

∂Uy

∂y
+ q1122

∂Uz

∂z
, (1)

with similar expressions forεyy andεzz obtained by cyclic exchange ofx , y, andz.
An electromagnetic wave with frequency ω and wavevectork in optically isotropic

medium can be characterized byD = ε̂ε0A exp(ik · r)exp(−iωt). Hereε0 is the dielectric
susceptibility of a vacuum,A is the light polarization vector, which is perpendicular to
the direction of thewave propagation,|k| = 2πε1/2/λ, andλ is the light wavelength in a
vacuum. The probability of the scattering process from state|Di 〉 to |D f 〉 is proportional to
the square of the projection of the initial state onto the final one. Since all the eigenstates are
orthogonal, the allowed processes are either from the state perturbed by phonon vibration
to theunperturbed state, or vice versa. The first process corresponds to light scattering with
phonon absorption leading to an anti-Stokes peak shift and the second one corresponds to
phonon emission, i.e. Stokes shift. Multi-phonon processes are also allowed but with much
less intensity.

Here we limit consideration to one-phonon anti-Stokes processes. The intensity of
Stokes peaks in experimental spectra can be found by scaling with the Boltzmann
factor [18]. The probability of the scattering process from state|Di 〉 to |D f 〉 is found
as Pf i ∝ |〈D f | Di 〉|2. Substituting an expression forD, taking into account that|Di 〉
corresponds to an electromagnetic wave inQDS with dielectric susceptibility (Eq. (1))
perturbed by phonons and applying quasi-periodic boundary conditions, we find the final
equation
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Fig. 1. Lowest phonon dispersion branches in cubic Ge/Si QDS withLx = L y = Lz = 3.0 nm; Dx = Dy =
Dz = 9.0 nm.Arrow indicates the wavevector of phonons taking part in Raman back scattering when the normally
incident light propagates along [[001]] direction. Note that the magnitudeof this wavevector is comparable to the
QBZ size.

Eq. (2) in an effective optical medium approximation can be expressed using conven-
tional Raman tensorR notation for thewhole 3D QDS structure via the expression
Pf i ∝ |A f · R · Ai |2, whereR components are determined by an integration of the
perturbed dielectric function over the QDS unit cell.

3. Results and discussion

We carry out numerical simulation for GeSi quantum dots on Si with the material
parameters taken as in [20]. Fig. 1 shows phonon dispersion for cubical QDS with the
dot size ofL = 3.0 nm and the period of D = 9.0 nm. It is usually assumed that in
normal-incidence back-scattering configuration the Raman spectroscopy probes the zone-
center phonons since transfer momentum is very small compared with the Brillouin zone
size, e.g. the wavelength of light is several orders of magnitude larger than the lattice
constant. The specific of Raman spectroscopy of regimented arrays of quantum dots is
that the momentum|q| ∼= 2|ki | is comparable with the size of the quasi-Brillouin zone
(QBZ) as indicated by the arrow inFig. 1. Thus, it is important to know the phonon
dispersion accurately when analyzing Raman spectra of QDS. In this figure, the double
degenerate transverse mode is marked by 2T , while longitudinal and mixed modes
are marked asL and M, correspondingly. Note, thateach phonon branch changes the
symmetry of the corresponding vibration in the regions of QBZ where it interacts with
other branches.

In Fig. 2(a) we present the calculated Raman spectrum of cubical Gex Si1−x/Si QDS
for different atomic fractionx of Ge in GexSi1−x quantum dots. In this calculation
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Fig. 2. Raman spectrum of (a) Gex Si1−x/Si cubic QDS with fixed dot size ofLx = L y = Lz = 3.0 nm, period
Dx = Dy = Dz = 9.0 nm anddifferent Ge atomic fractionx; (b) Ge/Si tetragonal QDS with fixed dot base
Lx = L y = 3.0 nm andDx = Dy = 9.0 nm, and different Dz = 2Lz along the [[001]] direction of light
propagation. To lead the eye the position of the lowest L and M modes is traced with dashed line. Note that due
to the change of the symmetry of the QDS unitcell the order of the modes may change.

we assumed that the change in atomic fractionx leads to a linear change in materials
parameters and used homogeneous broadening of 0.05 cm−1. The lowestwavenumber
peak seen inFig. 2(a, b) corresponds to the lowest longitudinal acoustic phonon mode
of the bulk material. As expected its position is almost not sensitive either to change in
atomic fraction or geometry. In the back scattering geometry with the normal incidence of
light parallel to the [001] direction of the host cubic semiconductors, the phonon modes
are Raman active if they have a longitudinal component of vibrations. Indeed, transverse
modes only produce shear vibrations with dux/dx = duy/dy = duz/dz = 0 which
do not contribute toPf i (see Eq. (2)). The change in Ge atomic fraction leads to two
noticeable effects: the shift of Raman peaks and redistribution of their intensity, e.g. gradual
damping of the signal from the third branch and increase of the signal from the upper
longitudinal and mixed modes. The latter can be traced back to the symmetry breaking
of the displacement. Since alloying between Ge dots and Si barrier layers may lead to
emergence of extra Si–Ge modes, which are difficult to separate from confined acoustic
Ge modes, our results may shed new light on experimental datainterpretation [9].

A change in the inter-dot distance between Ge dots in a Si matrix causes nonlinear
redistribution of intensities. In two limiting cases of infinitely small and infinitely large
inter-dot distances QDS evolves to bulk Ge or Si, respectively. Correspondingly, only the
lowest longitudinal mode is active. The upper longitudinal and mixed modes are most
intensive when the symmetry breaking is highest. It is achieved when the dot sizeL
is comparable with the inter-dot distanceH . The shrinking of the QBZ with increasing
D = H + L results in the red shift of these peaks since folding of the acoustic phonon



100 O.L. Lazarenkova, A.A. Balandin / Superlattices and Microstructures 33 (2003) 95–101

dispersion branches is attained at lower energies. Whenthe symmetry of QDS is preserved
the general structure of the Raman spectrum is the same.

Fig. 2(b) illustrates the effect of the dot shape, i.e. the symmetry breaking, on Raman
spectra. The presented results are for the dots with constant base (Lx = L y = 3.0 nm;
Dx = Dy = 9.0 nm) and changing height of the quantum dot along the [[001]] quasi-
crystallographic direction. The inter-dot distance is fixed atHz = Lz . One can see
significant redistribution of the peak intensity and strong shift of some peaks, which is
a combined effect of the QBZ size decrease in the [[001]] quasi-crystallographic direction
and strong modification of phonon dispersionwith change of the symmetry. The position
of each peak can be traced back to thecalculated dispersion (seeFig. 1).

One should note here that the peaks inFig. 2 have a more complicated structure than
typical doublets observed in Raman scattering from folded acoustic phonons in QWS. The
position of these peaks could not be deduced from Lamb-type models that use eigenmodes
of free-standing nanocrystals.

4. Conclusion

Analysis presented in this paper shows that it is essential to consider the vibration
spectrum of the whole structure in order to obtain correct peak positions and separate
the effect of strain or interdiffusion from phonon confinement. The proposed approach
allows for an accurate analysis of experimental Raman spectra ofquantum dot arrays. It
can be used to account for the effects of dot regimentation, matrix materials and assist in
separation of the spatial confinement effects from alloying and interdiffusion.
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